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Abstract:  
 
Aberrant activation of the PI3K pathway is a common alteration in human 

cancers. Therapeutic intervention targeting the PI3K pathway has achieved 

limited success due to the intricate balance of its different components and 

isoforms. Here, we systematically investigated the genomic and transcriptomic 

signatures associated with response to KIN-193, a compound specifically 

targeting the p110β isoform. By integrating genomic, transcriptomic, and drug 

response profiles from the GDSC database, we identified mutational and 

transcriptomic signatures associated with KIN193 and further created statistical 

models to predict the treatment effect of KIN-193 in cell lines which may 

eventually be clinically valuable. These predictions were validated by analysis of 

the external CCLE data set. These results may assist precise therapeutic 

intervention targeting the PI3K pathway.  

 
Statement of Significance: Findings provide new insights into molecular 

signatures associated with sensitivity of the p110β inhibitor KIN-193, which may 

provide a useful guide for developing precise treatment methods for cancer.  
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Introduction 
 
 

Phosphatidylinositol 3-kinase (PI3K) is an important signaling pathway 

mediating diverse cellular functions such as metabolism, cell growth and cell 

death   [1, 2]. It contains a family of genes that are divided into three classes. 

Class I, which is further subdivided into class IA and class IB, is the most widely 

studied and has been implicated in promoting proliferation in many cancers [3, 4]. 

The class IA PI3K proteins are heterodimers composed of a catalytic and 

regulatory subunit. The catalytic subunit has three isoforms: p110α, p110β and 

p110δ. p110α and p110β, encoded by PIK3CA and PIK3CB genes respectively, 

are the most ubiquitously expressed PI3K proteins across human cell types. 

Aberrant activation of the PI3K pathway is frequently observed in cancer. This is 

often driven by gain of function mutations in PIK3CA gene [4-6], while oncogenic 

PIK3CB mutations occur infrequently [7, 8]. However, some cancers are 

exclusively dependent on p110β protein instead of p110α [8-11]. These tumors 

mostly feature a wild-type (WT) PIK3CA gene but often have mutations and or 

deletions in the PTEN tumor suppressor, which is the main negative regulator of 

PI3K activity. Therefore, studying the action and effects of p110β specific drugs 

in PTEN-null tumors can be a very rewarding avenue of research.  

 The small molecule KIN-193 was previously shown to specifically target 

the p110β isoform and, hence, has been proposed as a potential drug to turn off 

PI3K signaling in PTEN null tumors [12].  In a previous study [12], it was shown 

that PTEN-null cell-lines indeed are highly enriched for KIN-193-sensitive status, 

although there remains an important subset that is KIN-193 resistant. Therefore, 

it is of clinical interest to identify the genetic signature(s) that may distinguish 

KIN-193-sensitive from resistant cell lines. In addition, many PTEN wild-type 

(WT) cell lines are also found to be KIN-193 sensitive, suggesting there are 

additional genetic and transcriptomic signatures that are associated with KIN-193 

sensitivity beyond PTEN status.  
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Recent efforts by various consortia have led to massive online repositories 

containing drug sensitivity data coupled with genetic and transcriptomic 

information for thousands of cancer cell lines [13, 14], providing a great 

opportunity to conduct a systematic analysis by using computational methods. In 

this study, we primarily use information from the GDSC database [13] and build 

statistical models to predict KIN-193 sensitivity. We show that a 100-gene 

mutation signature is highly predictive for KIN-193 resistant, PTEN-mutated 

cancer cell-lines. We further explored transcriptional signatures associated with 

KIN-193 sensitivity in PTEN-WT cell-lines and identified a 203-gene 

transcriptomic signature that has significant prediction power. These predictions 

were validated by using the external CCLE database [14] and were an extension 

of a previous study [12]. Our analysis has provided novel insights into the 

mechanism for p110β dependency and may be useful for predicting treatment 

outcome in the clinical setting. 

 
 
Methodology 
 
Data Sources: 

We utilized data from 2 major databases: GDSC (Genomics of Drug Sensitivity in 

Cancer: http://www.cancerrxgene.org/) and CCLE (Cancer Cell Line 

encyclopedia: http://www.broadinstitute.org/ccle). The GDSC Project has 

extensively profiled 1001 cell-lines for their mutation background (using Whole-

Exome sequencing), copy number variations (CNV), gene expression and DNA 

methylation status. They have also generated drug-response profiles for 265 

drugs across a majority of these cell-lines. Similarly, the CCLE consortium has 

generated mutation, CNV and expression data for 1043 cancer cell-lines.  We 

made two types of models: 1) based on mutation status and 2) derived from gene 

expression signature, using GDSC datasets, in cell-lines profiled for response to 

KIN-193 drug (alternative name: AZD6482). We then validated our models using 
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the external mutation/expression CCLE datasets and drug response data profiled 

by various other groups [12, 15, 16]. 

 

Modeling using mutation status of genes as predictive variables:  

 

Preprocessing of dataset: 

We z-score normalized the drug sensitivity profile of KIN-193 across the entire 

cell-line panel for each study (e.g.: 1001 GDSC cell-lines).  We then categorized 

all cell-lines with z-score < -0.5 (an arbitrary cutoff) as KIN-193 sensitive and cell-

lines with z-score > 0.5 as KIN-193 resistant. All other cell lines were 

characterized as Ambiguous.  

 

PTEN-null cell-lines were defined as those mutated in the PTEN gene. From the 

GDSC database we selected for PTEN-null cell-lines that could be characterized 

as KIN-193 sensitive (57 cell-lines with z-score < -0.5) or resistant (10 cell-lines 

with z-score > 0.5). We next filtered to remove all mutations that were present at 

low frequency (<3 cell-lines). This resulted in a feature matrix of 67 cell-lines X 

5143 genetic mutations, which was used to make all further PTEN null models.  

 

Mutual Information based Linear (MIL) model 

The feature matrix was used as input for PARIS (Probability Analysis by Ranked 

Information Score), which has been implemented as part of Project Achilles 

(https://portals.broadinstitute.org/achilles/resources/paris).  PARIS uses a mutual 

information-based metric (RNMI score: range -1 to 1) to rank features (in this 

case mutations) which is then used to determine most significant associations 

with the target profile (in this case: sensitivity/resistance to KIN-193 drug). To our 

knowledge, PARIS has not been previously used to predict drug sensitivity 

profiles. 

 

We ran this analysis using stratified 10-fold cross-validation (to maintain class 

balance) and found the top 100 features associated with sensitivity and 
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resistance each. We next assigned equal weight to each significant mutation and 

scored all sensitive mutations as +1 and resistant mutations as -1. This enabled 

us to calculate a cumulative mutation score for all cell-lines, which in turn could 

be used to predict their sensitivity/resistance to KIN-193. We also generated a 

cumulative RNMI score for each cell-line, which took into account the varied 

correlations of features with target profile, to predict sensitivity/resistance to KIN-

193. We repeated this 10-fold cross-validation analysis 25 times to evaluate 

model performance. 

 

Other Machine learning models: GLMNET & GBM 

We also made use of more sophisticated machine learning models like GLMNET 

(type of penalized linear regression) and GBM (Gradient Boosting: typically an 

ensemble of decision trees) [17] to make predictions about sensitivity/resistance 

of cell-lines to KIN-193. These models were comprehensive in the sense that 

they also selected for significant features associated with prediction.  

 

As we had a limitation of data especially for PTEN null models, we used nested 

10-fold stratified cross-validation to generate precision-recall curves to validate 

the models. The inner fold CV was used to tune the parameters and make the 

model whereas the outer fold CV was used to repeatedly generate training and 

testing datasets to validate the models. The models were made using Caret 

package in R [17].  

 

Determining PTEN-WT cell-lines that can be predicted as KIN-193 sensitive 

 

Defining a gene expression signature characteristic of majority PTEN null 

sensitive cells 

Utilizing the GDSC database, we generated an expression matrix of 57 PTEN-

null sensitive cell-lines by 17417 genes. We log-normalized the matrix and then 

filtered for genes that had highly variable expression (log2(max expr.) – log2(min 

expr.) ≥ 1). This gave a matrix of 57 cell-lines by 5313 genes which was then 
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hierarchically clustered using the Spearman rank correlation distance metric and 

Complete linkage clustering method.  This resulted in a core cluster of 17 cell-

lines (Spearman rank corr. ≥ 0.7). We next employed the Wilcoxon signed-rank 

sum test to identify genes that are differentially expressed between this core 

cluster and 967 PTEN WT cell-lines. 203 genes (at a stringent cutoff p-value of 

1E-7) were found to be significantly differentially expressed.  These genes were 

used for subsequent downstream gene signature analysis. By calculating a 

median expression pattern for the core cluster of 17 PTEN-null sensitive cell-

lines across the 203 genes, we were therefore able to define a PTEN null 

sensitive signature. 

 

Finding PTEN WT cell-lines that cluster with PTEN null-sensitive signature 

Next, to determine PTEN WT cell-lines that have a similar expression pattern to 

PTEN null sensitive signature, we took the matrix of 203 genes by 967 PTEN WT 

cell-lines and clustered (hierarchical clustering with Spearman rank correlation 

distance metric) them with the PTEN null sensitive signature defined above. Any 

WT cell-line with a correlation coefficient greater than 0.75 (as an arbitrary cutoff) 

was predicted as KIN-193 sensitive.  

 

Results  

 

Distinct genetic features are associated with KIN-193  resistance 

  

 In order to systematically identify the genetic features that are associated 

with KIN-193 sensitivity, we carried out an integrative analysis of the GDSC 

database [13], which contains genetic, transcriptomic, and drug response 

information of over 1001 cancer cell lines. As a starting point, we focused on the 

subset of 119 cell lines with PTEN mutation, which was previously recognized as 

a major determinant for KIN-193 sensitivity [12].  Among these cell lines, 67 had 

an unambiguous drug sensitivity outcome, including 57 sensitive and 10 resistant 
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cell lines (see Methods for details) (Supplementary Table 1A). After removing 

features that were infrequently mutated (n ≤ 3) in these cell lines, we obtained a 

list of 5143 features for further analysis.  

 

To quantify the degree of association, we used a mutual information based score 

(RNMI) as implemented in the PARIS software [18].  Briefly, the score measures 

correlation between each mutation feature and the KIN193 response status of 

cell-line (see Methods for details). Of note, many genetic mutations were 

significantly associated (abs(RNMI score) > 0.25) with KIN-193 resistance, 

whereas few mutations were strongly associated with KIN-193 sensitivity (Figure 

1A and Supplementary Table 1B).   

 We started by focusing on those genes whose mutations have previously 

been causally linked to cancer. For this, we utilized the cancer genes census in 

the COSMIC database, which has catalogued 616 such genes [19].  We 

identified 255 of these genes in our 5143-feature list and used the RNMI metric 

to rank them by their significance of association with KIN-193 resistance 

(Supplementary Table 1B).  A list of the top ranked features and their association 

with KIN-193 response in cells is shown in Figure 1B. One of these features was 

mutation in the KRAS gene (RNMI = -0.246). A closer examination indicates 

most of the identified mutations are oncogenic activation (Supplementary Figure 

1A, 1B). Consistent with our analysis, KRAS gain of function activations have 

previously been associated with resistance to pan PI3K inhibition [20] and switch 

from p110β to p110α dependence [21]. Another example is the presence of a  

PTCH1 mutation. Loss of function PTCH1 mutations has been shown to 

contribute to uncontrolled SMO activity, which in turn leads to constitutive 

Hedgehog signaling [22]. Interestingly, Buonamici et al. showed in 

Medulloblastoma that a PI3K inhibitor can delay the resistance to SMO-

antagonist [23]. Our study indicates that the cross-talk between Hedgehog 

signaling and PI3K pathway goes both ways. While anecdotal, these analyses 

suggest our predictions are consistent with existing knowledge in the literature.   

Notably, we also identified a number of novel features associated with KIN-193 
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resistance, such as CAMT1 and HIF1A, suggesting these factors may also be 

involved in mediating the PI3K pathway activity.  Of note, two subunits of PI3K, 

PIK3CB and PIK3R1, were also frequently mutated in the resistant cell-lines with 

frequency at 60% and 50% respectively (details in Supplementary Table 2), 

although the functional consequence is still unclear.  In the case of PIK3CB the 

mutations were likely to be loss of function which might be expected to yield 

resistance. 

 

 In addition, we carried out Gene Set Enrichment Analysis (GSEA) to 

identify pathways that are significantly associated with KIN-193 resistance, even 

though individual member genes may not be (Table 1, Supplementary Figure 2). 

Of note, we found mutations in YAP target genes (Cordenosi YAP conserved 

signature) to be enriched in KIN-193 resistance associated features (p-value = 

0.026), although the association becomes statistically insignificant after 

correction for multiple hypothesis testing. YAP along with TAZ plays a central 

role in the Hippo pathway [24] and this finding indicates a cross-talk between 

YAP/Hippo and PI3K pathway in PTEN mutated tumors.   

 

A mutation signature can predict PTEN mutated cell-lines that are resistant 

to KIN-193 

  

Motivated by our previous analysis, we set out to build a simple statistical model 

to predict KIN-193 sensitivity based on the genetic profiles. To this end, we 

defined a cumulative score for each cell line as follows. First, we created a 

ranked list of genetic features according to the RNMI values (Supplementary 

Table 1B). Second, we selected the top and bottom 50 features, as they are most 

associated with KIN-193 sensitivity or resistance. Finally, we summarized the 

overall effect by evaluating the difference between the total number of sensitivity-

associated mutations and resistance-associated mutations. This cumulative 

score is used to predict the KIN-193 treatment outcome for each cell line.  
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 We quantitatively evaluated the accuracy of this simple method to predict 

KIN-193 treatment outcome by using the 10-fold cross-validation approach. 

Specifically, we divided the 67 cell lines with known KIN-193 status into 10 

groups of roughly equal size while maintaining the class balance (85% sensitive, 

15% resistant, see Supplementary Figure 3). We next made 10 unique 

combinations of training and test datasets such that each cell-line was tested 

once (by combining 9 datasets as training and testing the remaining 10th). The 

prediction accuracy was evaluated by using Precision-Recall curves (Figure 2A, 

2B). This procedure was repeated 25 times for robustness evaluation. Strikingly, 

this simple method is very accurate for predicting resistant cell lines: the median 

precision level remains 100% at the 50% recall cutoff.  For comparison, we also 

considered a number of more complex models: 1) a weighted cumulative score 

approach, 2) a GLMNET (type of penalized linear regression) approach, and 3) a 

GBM (Gradient Boosting: typically an ensemble of decision trees) approach (see 

Methods for details). Interestingly, these more sophisticated models do not lead 

to better performance (Figure 2A, Supplementary Figure 4).  

   

Defining a gene expression signature to predict KIN-193-sensitive PTEN 

WT cell-lines  

   

 While PTEN loss is strongly associated KIN-193 sensitivity, a large 

number of PTEN WT cell-lines are sensitive to KIN-193, suggesting there are 

additional genetic and non-genetic factors that are yet to be identified.  To this 

end, we further integrated the gene expression data in the GDSC database in 

order to identify transcriptomic signatures that are associated with KIN193 

sensitivity (Supplementary Figure 5). To search for a common signature, we 

hierarchically clustered the PTEN-mutated sensitive cell-lines based on their 

gene expression patterns. We found 17 cell-lines to form a core cluster 

(Spearman rank correlation > 0.7) using two different approaches (Figure 3, 

Supplementary Figure 6) of which 15 cells lines are derived from Gliomas.    
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We next determined genes that are differentially expressed between 

PTEN WT (967 cell-lines) and the 17 cell-lines comprising the core cluster of 

PTEN mutated-sensitive cell-lines, by employing Wilcoxon signed-rank sum test 

(Figure 3A).  We ran GSEA to determine the main pathways enriched in genes 

over-expressed in PTEN WT sensitive and PTEN mutated sensitive cell lines 

(Figure 3B). We observed genes up-regulated due to YAP1 over-expression to 

be enriched in the PTEN mutated-sensitive cell-lines. This link between YAP 

pathway and PI3K signaling that we found both through mutation and expression 

analysis points towards a potential mechanism by which PTEN-null cell-lines can 

become resistant to KIN-193. We next filtered the significantly differentially 

expressed genes to 203 using a p-value cutoff of 1E-7. Calculating median 

expression for the 203 genes across the 17 KIN193-sensitive cell-lines, we were 

able to define a KIN193 sensitive signature. 

 We next tried to determine whether there are PTEN WT cell-lines that 

have similar transcriptional landscapes to the PTEN-mutated sensitive cell lines. 

Among the 64 PTEN WT cell-lines that showed high similarity (Spearman rank 

correlation > 0.7) and were predicted as KIN-193 sensitive (Figure 3C), 57 were 

previously tested for KIN-193 sensitivity by GDSC, and 34 (~60%) were 

determined to be sensitive (compared to 36% expected by chance). Only 3 

(~5%) were predicted as sensitive but experimentally determined to be resistant 

(compared to ~18.5% expected by chance). This analysis suggests that a gene 

expression signature similarity could explain the KIN-193 sensitivity of a 

significant fraction of PTEN WT cell lines (Figure 3D, 3E).   

  

Analysis of an external dataset validates our prediction model  

As an external validation, we applied the cumulative score described in 

the previous section to predict KIN-193 sensitivity for cell lines in the CCLE 

database [14]. Among the 100 features selected from the GDSC database, 97 

were also assayed in the CCLE database. Therefore, we calculated the 

cumulative score based on these 97 features (see Methods for details). 6 PTEN-

null CCLE cell-lines were predicted as KIN-193 resistant (by MIA-RNMI model). 
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Since drug-screening information is not available for the CCLE dataset, we 

evaluated the prediction accuracy by searching the literature [12, 15, 16]. For 3 

out of the 6 cell-lines, we found experimental evidence supporting their 

resistance to p110β targeting drugs (Figure 4, Supplementary Table 3).  

 

We also tested the validity of our gene expression based prediction model 

for PTEN WT cell lines based on the CCLE database. Among the 1037 cell-lines 

that have gene expression profiles (through microarray sequencing), 295 were 

previously tested for KIN-193 drug sensitivity [12]. Due to the platform 

differences, only 136 of the 203 genes that were associated with KIN-193 

sensitivity in GDSC were profiled in CCLE. Based on the expression level of 

these 136 genes, we identified 22 highly correlated cell-lines whose gene 

expression signature is similar to the 17 cell-line core cluster in GDSC 

(Spearman rank correlation > 0.55) (Figure 5A).  In keeping with expectation, the 

predicted cell-lines were enriched for mutation in PTEN (7 cell-lines: ~32%, p-

value = 0.003) (Figure 5B).  Strikingly, 16 out of the 22 cell-lines are indeed KIN-

193 sensitive, whereas the remaining 6 cell lines have ambiguous outcome 

(Figure 5C). These analyses provide additional support for the validity of our 

prediction model based on genetic and transcriptomic signatures.  

 

Discussion  

The PI3K pathway is often aberrantly activated in cancer.  During the past 

decade, several small molecules targeting the Class I PI3K have been 

investigated for their applicability as clinical drugs [12, 25-28]. However, the 

simple pan-PI3K approach has failed to provide effective clinical outcome due to 

both the combined toxicity of inhibiting all isoforms and the aberrant activation of 

alternate signaling pathways [29, 30]. It is also now well established that the 

different isoforms of PI3K perform distinct functions and therefore drugs targeting 

specific PI3K isoforms should be both more effective and cause fewer side-

effects. Indeed, the PI3K isoform specific drug: Idelalisib (targeting p110δ) was 
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recently approved for hematologic malignancies (https://www.cancer.gov/about-

cancer/treatment/drugs/fda-idelalisib). Another drug BYL719 targeting p110α is 

currently being tested in the clinical setting and is expected to gain FDA approval 

in ER positive PI3CA mutant cancers [25]. Though there are advantages to such 

targeted therapeutic approaches, often a mechanistic knowledge of the action of 

drug is required for successful translational applications. Moreover, precise tumor 

signatures are essential for defining the target patient population and successful 

clinical testing. In the context of p110β specific inhibitors KIN-193 has been 

shown to be especially potent in PTEN null tumors [12]. However, a number of 

PTEN null tumors are resistant to KIN-193, and many PTEN WT tumors are 

sensitive to KIN-193. Here we have presented a systematic approach to 

determine the KIN-193 sensitivity by integrating genetic, transcriptomic, and drug 

screening information that has recently become available.  

Analyzing PTEN-null cell-lines, we identified several secondary genetic 

features associated with KIN-193 resistance. Some of the features are well-

known, such as KRAS mutations (switches dependence of a PTEN null cell from 

p110β to p110α isoform) [21] and TNK2 mutations (aberrantly activates AKT 

pathway) [31], whereas others are previously unrecognized, such as Hedgehog 

signaling and the YAP/hippo pathway. Our results are therefore able to inform on 

the genetic heterogeneity of PTEN-null KIN-193 resistant tumors. 

It is important to recognize that p110β dependency is not limited to PTEN-

null cell lines. Little is known about how PTEN WT cell lines confer KIN-193 

sensitivity. Our integrative analysis provides a plausible explanation that 

transcriptomic profile similarity to PTEN-null cell-lines may lead to similar drug 

sensitivity phenotype, although this only accounts for a small fraction of the cell 

lines.   

In summary, our analysis has provided new insights into molecular 

signatures associated with KIN-193 sensitivity, which in turn may provide a useful 

guide for developing precise treatment methods for cancer.  
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PATHWAYS SIZE ES NES Pvalue FDR 

CSR_EARLY_UP.V1_UP 32 0.593 1.349 0.022 1 

CORDENONSI_YAP 21 0.62 1.338 0.026026 0.83373 

SRC_UP.V1_UP 43 0.571 1.308 0.01 0.90925 

TBK1.DF_DN 95 0.505 1.203 0.022 1 

PIGF_UP.V1_UP 71 0.504 1.188 0.044 1 

 
Table 1.  GSEA analysis predicts the Top 5 pathways associated with KIN-193 

resistance. 
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Figure Legends  

 

Figure 1: A. Binary matrix showing top 10 features associated with KIN193 

sensitivity (green) and resistance (purple). Red represents mutation in features 

whereas white represents WT. The features are ordered by RNMI score and 

shown across 67 PTEN-null cell-lines from GDSC. B. Boxplots of 6 resistance 

associated features that have been causally linked to cancer (COSMIC 

database). Cell lines with mutation in these features are more likely to be KIN-

193 resistant.  

 

Figure 2: A. Precision Recall curve depicts the accuracy of Mutual Information 

Aggregate models, using either equal weights (Red) or RNMI score (green) for 

features. The boxplots represent the distribution of precision scores obtained by 

making the models 25 times. Random line represents the precision scores 

expected at those recall values by random chance. B. Barplots show that, as the 

resistance of the cell-lines to KIN-193 increases, so does our accuracy in 

predicting the said cell-lines as resistant.  

 

Figure 3: A. Bar plot shows the top 5 genes that are over-expressed in PTEN 

WT (dark blue) and PTEN null-sensitive (light blue) cell-lines. B.  GSEA results 

represent the top pathways enriched in PTEN WT and PTEN null-sensitive cell-

lines. C. PCA plot shows 903 PTEN WT (grey) and 17 PTEN-null sensitive (red) 

cell-lines. 64 PTEN WT cell-lines (blue) have a transcriptional signature similar to 

the PTEN-null sensitive cell-lines (Spearman correlation > 0.75). D. Barplot 

depicts experimental data (IC50 values from GDSC) for 57 PTEN WT cell-lines 

predicted to be sensitive (Blue). 34 are experimentally validated to be sensitive 

whereas only 3 are wrongly predicted, The remaining 20 cannot be classified. As 

control, the corresponding values for all cell-lines are shown. E.  Logistic 

regression curve depicts the relationship between the correlation coefficient 

(PTEN WT with PTEN-null sensitive signature) and the likelihood of a PTEN-WT 
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cell-line being experimentally determined sensitive (left y-axis). Frequency of cell-

lines is represented on the right y-axis.  

 

Figure 4: Mutual information based aggregate models using either equal weights 

(MIA-Eqwt) or RNMI score (MIA-RNMI) made using GDSC data were applied to 

the CCLE databases. A binary matrix shows mutation in top 10 features 

associated with sensitivity (green) and resistance (blue) to KIN193. Data is 

shown for 6 PTEN-null cell-lines predicted to be resistant by MIA RNMI model, 3 

of which are validated by published datasets (dark green), 1 is Ambiguous (light 

green) and the remaining has unknown status.   

 

Figure 5: The KIN193 gene expression signature (made from GDSC datasets) is 

used to predict sensitivity in CCLE cell-lines. A. Logistic regression curve depicts 

the relationship between the correlation coefficient (PTEN WT with PTEN-null 

sensitive signature) and the likelihood of a PTEN-WT cell-line being 

experimentally determined sensitive (left y-axis). Frequency of cell-lines is 

represented on right y-axis. B. PTEN mutation frequency depicted in % barplot 

for the 22 WT cell-lines predicted sensitive vs. control of 295 cell-lines. C. Matrix 

showing the prediction score, PTEN mutation status (purple: mutated, white: WT) 

and experimental data on the 22 CCLE WT predicted sensitive cell-lines. 
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